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A New Approach to Quasi-Static Analysis
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Abstract-The measured equation of invariance (MEI), a new,
rapid technique for electromagnetic field analysis, is applied
for the first time to planar circuit problems. Variations of the

technique applicable to microstrip geometry are described. As
a demonstration, it is then applied to electrostatic analysis of

structures held at different potentials, using novel umbilical
meshes. The MEI technique offers the possibility of order-of-
magnitude increases in computational speed for typical problems

of microwave CAD.

I. INTRODUCTION

T HE measured equation of Invariance (MEI) technique

is new approach to electromagnetic field calculations,

invented by Mei et al. [1], and demonstrated in applications to

scattering by conducting and dielectric bodies [2]. It is remark-

able because it eliminates most of the mesh points needed in

the conventional finite-difference technique, resulting in much

faster computation. The reduction in mesh size is much greater

than with absorbing boundary conditions, and in addition, MEI

has a dramatic ability to include in the calculation conductors

or boundary conditions which are completely outside of the

mesh ! There is also some similarity to the Method of Moments,

in that both make use of an appropriate Green’s function. How-

ever, the MEI method results in sparse matrices, yielding much

faster solution times for large problems. The MEI technique

has been found to give highly accurate results in a variety of

problems (See, for example, Fig. 3.) It should be noted that

what is being used here is not simply a slight modification of

well known methods. As announced in reference [1], it is an

entirely new technique for electromagnetic field problems.

The purpose of this letter is to demonstrate and present

recent advances in the use of the new method for problems of

the sort that rise in planar microstrip circuits, Although it is

by no means necessary, we restrict ourselves for the moment

to the quasi-static approximation, solving for the potential, 0,
satisfying Laplace’s equation subject to @ = constant on the

microstip, @ = O on the ground plane, and tangential electric

field continuous across the dielectric interface.
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Ground Plane
Fig. 1. Microstrip structnre, with the entire finite-difference mesh used with

the MEI mehtod. Note that the mesh covers only the microstrip line.
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Fig. 2. Geometry of local nodes for writing finite-difference equations.

II. OUTLfNE OF THE METHOD

The MEI method uses information from the Green’s func-

tion to terminate finite-difference meshes extremely closely to

the objects being analyzed. The finite-difference mesh used for

microstrip is shown in Fig. 1. Note that only the microstrip is

enclosed by the mesh, while most of the dielectric interface

and all of the ground plane are outside the mesh.

Finite-difference equations (FD) are written for interior

points of the mesh. Thus, we use for the points shown in

Fig. 2(a),

@~+a’~+ Q’3+c’4-4c’()=o. (1)

We may write this “equation of invariance” in the more general
form,

N

For points not on the dielectric interface, N = 4, and aa =

0.25. For points along the dielectric interface, the coefficients

are al = 1/2(1 + &R), a2 = a3 = 0.25, a4 = zR/2(1 + CR).

On the mesh boundary, an equation for the set of points

shown in Fig. 2(b) or (c) must be written. This equation must

depend upon the external geometry of the problem. Otherwise,

the answer would, for example, be independent of the height
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Fig. 3. Calculated even (Z~~ ) and odd (Z~~ ) mode characteristic impedances
for coplanar coupled lines. The solid lines are this work, and the points are
from [3]. For the case plotted, S/H = 0.4. Substrate permitivity is 9.6.

H, which clearly is not right. To obtain the coefficients, ai, the

Green’s function that satisfies the external boundary conditions

(0 = O on the ground plane and tangential E continuous on

the dielectric surface, in this case) is used. Electric potentials,

known as measuring functions, are constructed by integrating

the Green’s function against arbitrarily chosen charge dis-

tributions, which are called metrons. IV sets of values d?~,

corresponding to these constructed fields, are then inserted into

(2), yielding a system of N simultaneous equations which can

be solved for the coefficients al, ..., aiv. (N would be 5 for

the case of Fig. 2(b), and 3 for the case of Fig. 2(c).)

Having found sets of coefficients, ai, for each external mesh

point (the ai will be different for different mesh points), we

can now find the actual potentials at the &f lattice points. This

is done by writing Lf simultaneous equations by generalizing

the finite-difference method in the following way. Equation

(2) is written for each mesh point. For internal points, the

standard FD coefficients are used, while for external points, the

measured equations are used with the appropriate coefficients,

ai, for each particular point. This yields a highly sparse system

of equations, which may be more rapidly solved than an

equivalent system using the method of moments, which yields

full matrices.

III. TFIE METRONS

The N measuring functions, m~(fl{k = 1,..., N}, are

found by integrating a chosen metron, ok, against the Green’s

function for the external geometry, as

mk (F’) =
/

G(flF’)CTk(7’)dr-’. (3)
c

The metrons are simply assumed charge distributions placed

on the surface of the microstrip. Their purpose is to generate
measuring functions satisfying the external boundary condi-

tions. The Green’s function in this case is the static Green’s

function using image theory from [3]. In most cases, the

metrons we use are simple sinusoidal functions. The exact

choice of metrons is not an important factor in the solution.

Metrons that are continuous functions of position generally

work well. It is interesting that the sets of coefficients, ai,

~w/2+
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Fig. 4. Bilevel coupled liues. No dielectric is present in this case. For
the dimensions W/Hz = 1.25, HI /Hz = 1.5, the following results are
obtained Cl = 2.597, C’z = 3.785, and C’~ = 1.079. Using the spectral
domain approach [4], the results are 2.566, 3.753, and 1.065, respectively.
Note that the entire finite-difference mesh used in the calculation is shown.

that emerge from the computation are nearly independent of

the choice of metrons, The specific metrons used for each

example will be given next.

IV. APPLICATION TO MICROSTRIP

The potential is obtained by solving the sparse matrix

yielded by the previous procedure. Once the potential is

obtained, the electric field and charge distribution may be

determined, and from this the impedance of the line calcu-

lated. Results for the impedance of a single microstrip are in

extremely good agreement with known results [3], even with

the coarse mesh shown in Fig. 1. The metrons used in this

example were COS(2(2– l)nz/W), for i = 1,2,3,4,5. Using

sin instead of COS,or multiplying by an edge condition factor,

1/~-, yields nearly identical results.

Completely different problems may be solved by changing

the Green’s function used to generate the measuring functions.

Symmetric coupled microstrips, seen in the inset of Fig. 3, may

be solved by using images to enforce even or odd symmetry,

corresponding to the normal modes of the coupled lines. The

results shown in Fig. 3 agree well with previous work [3].

This example illustrates the strength of the technique. Keeping

the mesh, the FD equations, and the metrons the same, and
changing only the Green’s function to reflect the different

outside dimensions, one generates a family of different curves.

V. UMBILICAL MESHES ,

More general coupled lines, where consideration of sym-

metry does not give the normal modes of the system, may
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be analyzed as well. In this case, both conductors must be

surrounded by meshes, and two analyses performed in order

to obtain the self and mutual capacitances of the conductors.

First, the potential of one conductor is held at 1 volt and the

other grounded, yielding Cl and C’~, then the voltages are

reversed, yielding C’z.

Two separate meshes are not quite sufficient to solve the

problem. The potentials near each conductor are influenced

by the voltage of the other. The measured equations do not

contain any information about the potential of the conductors,

so if the two meshes were completely distinct, the solution

near one conductor would be independent of the voltage on

the other. Hence, we connect the two meshes with “umbilical

cords,” to pass information between them. It was found that

two cords are necessary, forming a mesh with a hole in it, as

shown in Fig. 4. Again, finite-difference equations are used,

where possible. At mesh boundary points, both interior and

exterior, measured equations are written.

Since in this problem there are two conductors, metrons

must be placed on both, and the integration in (3) taken over

both conductors. The Green’s function is simply that of a point

charge over a ground plane (no dielectric in this problem). The

principle is that the Green’s function must satisfy boundary

conditions that are external to the mesh, while the finite-

difference formulation takes care of bounday conditions on

conductors or dielectrics within the mesh.

There is more freedom in choosing metrons when there are

two conductors. In general, the metron charge distributions

are arbitrary. Thus, some metrons might include charge on

only the first conductor, and others on the second. In fact,

this works, provided that all points on the conductors are

supplied with charge by at least one of the metrons. In this

case, the metrons used were al = 1 on the top, ~2 = 1 on the

bottom, us = cos(27rz/W) on the top, OA = cos(27rz/W)

on the bottom and finally m5 = cos(47rz/W) on the top.

The capacitances calculated using this method agree well with

calculations using the spectral domain method [4].

VI. CONCLUSION

In this letter, we have demonstrated the use of the MEI

technique for quasi-static field computation, in geometries

typical of planar microwave circuits. We note that in this

technique the computational mesh does not have to contain

all conductors in the problem; information about conductors

outside the mesh is supplied by Green’s functions satisfying

boundary conditions on those external conductors. Interest-

ingly, the answers obtained depend little upon the choice of

the metrons. Umbilical meshes, i.e, meshes with holes inside

them, are convenient and efficient for problems having several

conductors. For large problems, we expect that the rapidity

with which the resulting sparse matrices can be inverted

will far outweigh the initial time required in calculating the

necessary Green’s functions. Thus, overall solutions will be

obtained more quickly than with earlier methods.
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