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A New Approach to Quasi-Static Analysis
with Application to Microstrip
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Abstract—The measured equation of invariance (MEI), a new,
rapid technique for electromagnetic field analysis, is applied
for the first time to planar circuit problems. Variations of the
technique applicable to microstrip geometry are described. As
a demonstration, it is then applied to electrostatic analysis of
structures held at different potentials, using novel umbilical
meshes. The MEI technique offers the possibility of order-of-
magnitude increases in computational speed for typical problems
of microwave CAD.

1. INTRODUCTION

HE measured equation of Invariance (MEI) technique
is new approach to electromagnetic field calculations,
invented by Mei ef al. [1], and demonstrated in applications to
scattering by conducting and dielectric bodies [2]. It is remark-
able because it eliminates most of the mesh points needed in
the conventional finite-difference technique, resulting in much
faster computation. The reduction in mesh size is much greater
than with absorbing boundary conditions, and in addition, MEI
has a dramatic ability to include in the calculation conductors
or boundary conditions which are completely outside of the
mesh! There is also some similarity to the Method of Moments,
in that both make use of an appropriate Green’s function. How-
ever, the MEI method results in sparse matrices, yielding much
faster solution times for large problems. The MEI technique
has been found to give highly accurate results in a variety of
problems (See, for example, Fig. 3.) It should be noted that
what is being used here is not simply a slight modification of
well known methods. As announced in reference [1], it is an
entirely new technique for electromagnetic field problems.
The purpose of this letter is to demonstrate and present
recent advances in the use of the new method for problems of
the sort that rise in planar microstrip circuits. Although it is
by no means necessary, we restrict ourselves for the moment
to the quasi-static approximation, solving for the potential, &,
satisfying Laplace’s equation subject to ® = constant on the
microstrip, ® = 0 on the ground plane, and tangential electric
field continuous across the dielectric interface.
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Microstrip structure, with the entire finite-difference mesh used with
the MEI mehtod. Note that the mesh covers only the microstrip line.

Fig. 1.
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Fig. 2. Geometry of local nodes for writing finite-difference equations.

II. OUTLINE OF THE METHOD

The MEI method uses information from the Green’s func-
tion to terminate finite-difference meshes extremely closely to
the objects being analyzed. The finite-difference mesh used for
microstrip is shown in Fig. 1. Note that only the microstrip is
enclosed by the mesh, while most of the dielectric interface
and all of the ground plane are outside the mesh.

Finite-difference equations (FD) are written for interior
points of the mesh. Thus, we use for the points shown in
Fig. 2(a),

By + Dy + By + Dy — 4Dy = 0. (1)

We may write this “equation of invariance” in the more general
form,

N
> a:®; = . 2
=1

For points not on the dielectric interface, N = 4, and a; =
0.25. For points along the dielectric interface, the coefficients
are a1 = 1/2(1 + eg),az = a3 = 0.25, ay = eg/2(1 + ¢g).
On the mesh boundary, an equation for the set of points
shown in Fig. 2(b) or (c) must be written. This equation must
depend upon the external geometry of the problem. Otherwise,
the answer would, for example, be independent of the height
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Fig.3. Calculated even (Zo¢) and odd (Zoo) mode characteristic impedances

for coplanar coupled lines. The solid lines are this work, and the points are
from [3]. For the case plotted, S/H = 0.4. Substrate permitivity is 9.6.

H, which clearly is not right. To obtain the coefficients, a;, the
Green’s function that satisfies the external boundary conditions
(® = 0 on the ground plane and tangential £ continuous on
the dielectric surface, in this case) is used. Electric potentials,
known as measuring functions, are constructed by integrating
the Green’s function against arbitrarily chosen charge dis-
tributions, which are called metrons. N sets of values ®;,
corresponding to these constructed fields, are then inserted into
(2), yielding a system of N simultaneous equations which can
be solved for the coefficients aq,---,an. (N would be 5 for
the case of Fig. 2(b), and 3 for the case of Fig. 2(c).)

Having found sets of coefficients, a;, for each external mesh
point (the a; will be different for different mesh points), we
can now find the actual potentials at the M lattice points. This
is done by writing M simultaneous equations by generalizing
the finite-difference method in the following way. Equation
(2) is written for each mesh point. For internal points, the
standard FD coefficients are used, while for external points, the
measured equations are used with the appropriate coefficients,
a;, for each particular point. This yields a highly sparse system
of equations, which may be more rapidly solved than an
equivalent system using the method of moments, which yields
full matrices.

[II. THE METRONS

The N measuring functions, my(F){k = 1,---,N}, are
found by integrating a chosen metron, oy, against the Green’s
function for the external geometry, as

ma () = / G )ou(7)dr. 3)

c

The metrons are simply assumed charge distributions placed
on the surface of the microstrip. Their purpose is to generate
measuring functions satisfying the external boundary condi-
tions. The Green’s function in this case is the static Green’s
function using image theory from [3]. In most cases, the
metrons we use are simple sinusoidal functions. The exact
choice of metrons is not an important factor in the solution.
Metrons that are continuous functions of position generally
work well. It is interesting that the sets of coefficients, a;,
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Fig. 4. Bilevel coupled lines. No dielectric is present in this case. For
the dimensions W/Hs = 1.25, Hi/Hy = 1.5, the following results are
obtained: Cy = 2.597, Cy = 3.785, and Cr, = 1.079. Using the spectral
domain approach [4], the results are 2.566, 3.753, and 1.065, respectively.
Note that the entire finite-difference mesh used in the calculation is shown.

that emerge from the computation are nearly independent of
the choice of metrons. The specific metrons used for each
example will be given next.

IV. APPLICATION TO MICROSTRIP

The potential is obtained by solving the sparse matrix
yielded by the previous procedure. Once the potential is
obtained, the electric field and charge distribution may be
determined, and from this the impedance of the line calcu-
lated. Results for the impedance of a single microstrip are in
extremely good agreement with known results [3], even with
the coarse mesh shown in Fig. 1. The metrons used in this
example were cos(2(i — 1)wz /W), for i = 1,2, 3,4, 5. Using
sin instead of cos, or multiplying by an edge condition factor,
1/4/ 2% — (W/2)?), yields nearly identical results.

Completely different problems may be solved by changing
the Green’s function used to generate the measuring functions.
Symmetric coupled microstrips, seen in the inset of Fig. 3, may
be solved by using images to enforce even or odd symmetry,
corresponding to the normal modes of the coupled lines. The
results shown in Fig. 3 agree well with previous work [3].
This example illustrates the strength of the technique. Keeping
the mesh, the FD equations, and the metrons the same, and
changing only the Green’s function to reflect the different
outside dimensions, one generates a family of different curves.

V. UMBILICAL MESHES

More general coupled lines, where consideration of sym-
metry does not give the normal modes of the system, may
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be analyzed as well. In this case, both conductors must be
surrounded by meshes, and two analyses performed in order
to obtain the self and mutual capacitances of the conductors.
First, the potential of one conductor is held at 1 volt and the
other grounded, yielding C; and C,,, then the voltages are
reversed, yielding Cb.

Two separate meshes are not quite sufficient to solve the
problem. The potentials near each conductor are influenced
by the voltage of the other. The measured equations do not
confain any information about the potential of the conductors,
so if the two meshes were completely distinct, the solution
near one conductor would be independent of the voltage on
the other. Hence, we connect the two meshes with “umbilical
cords,” to pass information between them. It was found that
two cords are necessary, forming a mesh with a hole in it, as
shown in Fig. 4. Again, finite-difference equations are used,
where possible. At mesh boundary points, both interior and
exterior, measured equations are written.

Since in this problem there are two conductors, metrons
must be placed on both, and the integration in (3) taken over
both conductors. The Green’s function is simply that of a point
charge over a ground plane (no dielectric in this problem). The
principle is that the Green’s function must satisfy boundary
conditions that are external to the mesh, while the finite-
difference formulation takes care of boundary conditions on
conductors or dielectrics within the mesh.

There is more freedom in choosing metrons when there are
two conductors. In general, the metron charge distributions
are arbitrary. Thus, some metrons might include charge on
only the first conductor, and others on the second. In fact,
this works, provided that all points on the conductors are
supplied with charge by at least one of the metrons. In this

case, the metrons used were g1 = 1 on the top, o9 = 1 on the
bottom, o3 = cos(2rz/W) on the top, oy = cos(2wz/W)
on the bottom and finally o5 = cos(4drz/W) on the top.
The capacitances calculated using this method agree well with
calculations using the spectral domain method [4].

VI. CONCLUSION

In this letter, we have demonstrated the use of the MEI
technique for quasi-static field computation, in geometries
typical of planar microwave circuits. We note that in this
technique the computational mesh does not have to contain
all conductors in the problem; information about conductors
outside the mesh is supplied by Green’s functions satisfying
boundary conditions on those external conductors. Interest-
ingly, the answers obtained depend little upon the choice of
the metrons. Umbilical meshes, i.e, meshes with holes inside
them, are convenient and efficient for problems having several
conductors. For large problems, we expect that the rapidity
with which the resulting sparse matrices can be inverted
will far outweigh the initial time required in calculating the
necessary Green’s functions. Thus, overall solutions will be
obtained more quickly than with earlier methods.
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